Health policy and the dental implant practitioner

By Arun Garg, DMD

In 2007, when the American Heart Association changed the recommendations for antibiotic prophylaxis for routine dental care in patients with valvular heart disease, some dentists scoffed, others rejoiced. The policy change was the first of its kind since the organization began recommending prophylaxis for routine dental procedures 50 years earlier.

Considering the fact that an estimated 2 percent of the U.S. population carries the diagnosis of mitral valve prolapse, a relatively benign heart-valve disorder that had, until 2007, required administration of antibiotics in advance of any dental procedure (including routine cleaning), this was indeed a noteworthy change.

The use of antibiotics for the intended prevention of endocarditis in individuals at higher risk (those with valvular pathology) had far-reaching effects on antibiotic resistance rates, the cost of medical and dental care, the number of emergency visits for allergic reactions to medications, even overall compliance with routine teeth cleaning visits.

Some dentists chose to ignore the revised recommendations, responding that the risks of bacterial endocarditis were outweighed by the benefits of antimicrobial administration, regardless of population effects. Other dentists were not aware that the recommendations had even been changed. Most have complied with the current recommendations and do not insist on antibiotic prophylaxis unless so indicated by evidence-based research.

Health policy has, in many ways, changed the way that dentists and dental implant practitioners practice. The influences of various medical societies will continue to have an impact for dental implant practitioners in the years to come given the expanding use of electronic health records, the institution of government-driven health reform programs and the paradigm shift from practitioner instinct to evidence-based decision making.

These policy changes are intended for the betterment of societal health care as a whole, however, they do not always reflect a consensus among medical and dental societies nor are they always readily applicable to the patient directly in front of us.

A hotly contested topic between orthopedic surgeons, dentists and infectious disease experts involves the extent to which antibiotic prophylaxis prior to specific dental procedures is required to prevent bacterial seeding of the joint in patients who have received total joint replacements.

Previously, the three groups aligned and supported antibiotic prophylaxis for individuals who had had joints replaced within two years and those at higher risk due to medical conditions, however, a more recent publication from the American Association of Orthopaedic Surgeons (AAOS), put forth in February 2009 and revised in June 2010, states that all patients with total joint replacements should be given antibiotic prophylaxis for specific medical and dental procedures for the rest of their lives.

The impetus, consequences and controversy of this change are still being widely debated. In response to the AAOS statement, the American Academy of Oral Medicine issued a pointed rebuttal debunking the reasoning behind the AAOS statement and reminded practitioners to make their own clinical decisions.
New universal self-etch bonding agent without the need for a separate activator

Oxford Scientific Dental Products introduces Oxford Bond SE, a simple-to-use, self-etching bonding agent. Oxford Bond SE is designed for use in both direct and indirect techniques. The agent provides strong, reliable bonding of composites, comomers and resin-reinforced glass ionomer materials to dentin and enamel. Unlike most self-etching bonding systems, Oxford Bond SE can be used for indirect procedures without adding a separate adhesive or dual-cure activator. This simplifies the procedure and makes it more reliable by eliminating any variability introduced by various staff members, ensuring a tenacious bond with every procedure.

Proven to be superior
Oxford Bond SE provides all the benefits of a cutting-edge self-etch adhesive: less patient sensitivity, ease of use and fewer application steps. It exhibits superior bond strengths to both dentin and enamel. In a laboratory study (data available upon request), Oxford Bond SE showed bond strengths superior to six of the leading self-etch adhesives on the market. Oxford Bond SE received a +++ rating from The Dental Advisor. More than 50 percent of the evaluators stated they would switch from their current self-etch bonding agent to Oxford Bond SE. Oxford Bond SE is very simple to use. Application requires only three steps with a total time of 45 to 50 seconds. Light-curing is achieved in 20 seconds and self-curing is achieved in 5 minutes.

Oxford Bond SE is supplied in 5 ml bottles or in 0.15 ml single doses. The single-dose delivery system is highly reliable. Gravity feeds the fluid in the upper chamber into the lower chamber, insuring a complete and homogenous mixing of the components. Each single-dose container has enough bond to at least three units. This single-dose system provides enough material for a standard procedure without wasting and inordinate amount of bonding agent in the mixing well. It also promotes good infection control.

Oxford Bond SE is competitively priced and represents a very good value for your supply dollar. To order Oxford Bond SE or to obtain additional information, call Finni- gan Enterprises at (888) 686-1950 or go to www.oxfordscientificdental.com.

About Oxford Scientific Dental Products
Although the Oxford Scientific brand name may be new to North American dental professionals, the company has been manufacturing dental consumables for a number of U.S. companies for nearly 20 years. Oxford Scientific Dental Products are manufactured to the highest standards. The facility is FDA registered and the products are CE certified.

The company’s mission is to provide the dental consumer with the finest quality materials based upon state-of-the-art manufacturing and the pride of a dedicated workforce. The company’s portfolio currently contains: a core build-up material, Oxford Zircare Nano; a dual-cure, nano zirconia filler reinforced resin core build-up material that was rated “Excellent-Good” by an “independent, non-profit dental education and product testing institute” in its January 2011 newsletter; a complete line of temporary crown and bridge materials, such as Oxford Temp, a temporary C&B material, Oxford Temp Cem, a temporary cement and Oxford Correct, a flowable composite repair material for the temporary C&B material. Oxford Correct was selected by the "independent, non-profit dental education and product testing institute" for its 2010 Buying Guide, published in its December 2010 newsletter.

The Oxford Scientific Dental Product portfolio will constantly expand to fulfill the needs of every practitioner for high-quality restorative materials at a competitive price, while maintaining a commitment to satisfaction.


Yet will that seemingly harmless decision undermine antimicrobial compliance improvement efforts elsewhere?

Hospitals and other large healthcare facilities are initiating programs known as “antibiotic stewardship programs” to facilitate responsible and appropriate antimicrobial use in a particular health care institution. And while these programs are most often undertaken in larger health-care settings, the reality is that application of certain principles at the micro level will enhance antibiotic effectiveness in the general population provided all practitioners (and patients) use antimicrobial agents appropriately.

The relevance of antimicrobial stewardship at the hospital level does trickle down to the individual provider in the dental implant practice. Every antibiotic prescribed conveys a risk of allergic reaction, drug interaction, antibiotic-associated diarrheal illness, decreased population effectiveness and increased cost to the health-care system.

Nonetheless, when indicated, a single dose of preoperative antibiotic or a course administered for a wound infection is absolutely essential.

Limiting antibiotic use to those cases supported by evidence-based practice (and espoused by consensus statements from multiple organizations) will help reduce the amount of antibiotic resistance within the population. Individual practitioners will ultimately be the ones responsible for effecting change at the population level.